
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 18. November 2019
Markus Püschel, David Steurer
Johannes Lengler, Gleb Novikov, Chris Wendler

Algorithms & Data Structures Exercise sheet 9 HS 19

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

Submission: On Monday, 25 November 2019, hand in your solution to your TA before the exercise
class starts. Exercises that are marked by ∗ are challenge exercises. �ey do not count towards bonus
points.

Remark. Some material for this sheet will be covered in the lecture on Tuesday, 19.11. In the following
we already provide the de�nitions that are necessary for this sheet.

De�nition 1. A graph is called empty if it does not contain any edge. A graph is called complete if
every pair of vertices is adjacent to each other.

De�nition 2. A cycle is a sequence v1, . . . , vk, vk+1 with k ≥ 3 such that all v1, . . . , vk are distinct,
v1 = vk+1 and such that any two consecutive vertices are adjacent. A graph is called acyclic (or a forest)
if does not contain cycles.

De�nition 3. A graph is connected if there is a path between every pair of vertices.

De�nition 4. A graph which is acyclic and connected is called a tree.

De�nition 5. A leaf in a graph is a vertex of degree one.

Exercise 9.1 Forests (1 point).

a) Show that any longest path in a nonempty forest connects two di�erent leaves of this forest.

Solution: Let G be a forest. Consider some longest path P = v1, v2, . . . , vk in G. �is path exists
since the set of paths is not empty (becauseG has at least one edge) and lengths of paths are bounded
by the number of vertices in G.

Let’s prove that the vertices v1 and vk have degree 1 in G. Assume without loss of generality that
deg v1 > 1 (it cannot be 0 since v1 has a neighbour v2). It means that v1 has at least two di�erent
neighbours, so there exists a neighbour u of v1 di�erent from v2.

Case 1 If u belongs to P , then u = vi, where 2 < i ≤ k, and vi, v1, v2, . . . , vi is a cycle in G, which
contradicts the fact that T is acyclic.

Case 2 Otherwise, u, v1, . . . , vk is a path in G of length k + 1, which contradicts the fact that P is a
longest path in G. Hence deg v1 = 1.

Using the same argument one can show that deg vk = 1. �erefore, any longest path in a nonempty
forest contains at least two leaves.

b) Assume that a forest G = (V,E) has k vertices of odd degree, where k ≥ 0 (notice that k has to be
even). Show that E is the union of (the edge sets of) k/2 edge-disjoint paths. Note that the paths do
not need to be vertex-disjoint.

Solution:We use induction on k. For k = 0, the forest must be empty, since every non-empty forest
has at least two leaves by part (a). So the statement is true for k = 0.

Now assume that k > 0. Consider a longest path P in the forest, and consider the graph G′ that
is obtained from G by removing all edges of P . �en we claim that G′ has k − 2 vertices of odd
degree: �e two endpoints of P have degree 1 in G by part a), so they have degree zero in G′. All
other vertices decreased their degree by 2 (if they are on P) or by 0 (if they are not on P), so they
do not change their parity.

By induction hypothesis, the edge set of G′ can be wri�en as the union of (k − 2)/2 = k/2 − 1
paths. Together with P , these paths cover exactly the edges of G, as required.

Exercise 9.2 Trees.

a) Show that in any tree there is a unique path between any pair of two di�erent vertices u and v.

Solution: Suppose there are two di�erent paths P1, P2 between u and v. Let x be the �rst place they
diverge. Let y be the next vertex on P1 that also appears on P2. �en the vertices between x and y
on P1 do not appear on P2, and thus the two paths from x to y (on P1 and P2) are disjoint except for
start- and endpoint. �us together they form a cycle. �is contradicts the acyclic assumption. �us
there is only one path.

b) Show that adding an edge between any pair of non-adjacent vertices of a tree creates a cycle.

Solution:�ere is a path between u and v because a tree is connected by de�nition. Together with
an additional edge from u to v, this will form a cycle.

c) Prove by mathematical induction that the number of edges in a tree with n vertices is n− 1.

Hint: For the inductive step, start with a tree of n + 1 vertices, and �nd a way to construct a tree of n
vertices. For this construction, it is helpful to use Exercise 9.1 a).

Solution:

• Base Case: Let n = 1. �ere is a single node, and there cannot be any edge from it to itself
because then there would be a cycle. �ere are no other nodes to connect, so there must be 0
edges.

• Induction Hypothesis: Assume that any tree with n vertices has exactly n− 1 edges.

• Inductive Step: Consider a tree with n + 1 vertices. Remove any vertex of degree 1 from the
tree. �ere must be such a vertex due to Exercise 9.1 a). �e resulting graph is still connected
because no connecting path can run over a vertex, and it is also still acyclic. �us the resulting
graph is a tree with n vertices. By the induction hypothesis, this tree has n− 1 edges. Add the
leaf node back to the tree. �is adds only one edge to the tree. �us the full tree has n edges.

By the principle of mathematical induction, a tree with n vertices has n − 1 edges for any
positive integer n.

2

d)∗ Prove that every connected graph G with n vertices and n− 1 edges is a tree.

Solution:We need to show that every connected graphG = (V,E) with n vertices and n−1 edges
is acyclic. Assume that it has a cycle v1, . . . , vs, v1. Let e = {v1, vs}. �en we claim that the graph
G′ with vertex set V and edge set E′ := E \ {e} is still connected. To see this, let u,w ∈ V . We
want to show that there is a walk from u tow inG′. We already know that there is a walkW from u
to w inG. If the walk does not contain e, then this is also a walk inG′, and we are done. Otherwise,
we can just replace the edge e by the walk v1, . . . , vs (in this order if we traverse e from v1 to vs,
and in the reverse order if we traverse e from vs to v1). If e appears several times in in the walk then
we replace it each time. Hence G′ is connected.

If G′ contains a cycle, we repeat the procedure described above, i.e. we remove an edge from G′ to
get a connected graph G′′. We repeat this procedure until we get a connected acyclic graph T . T
has at most n− 2 edges (since we removed e and possibly some other edges), but T is a tree and by
part c) any tree with n vertices has n− 1 edges, so we get a contradiction.

Exercise 9.3 Cycles and minimal vertex degree (1 point).

a) Assume that minimal vertex degree of a graph G is d > 1. Show that G contains a cycle of length
at least d + 1.

Hint: Consider some longest path in G.

Solution: Let P = v1, . . . , vk be a longest path. �en every edge from vk must target one of the
vertices v1, . . . , vk−1, since otherwise we could extend the path to the neighbour of vk. Let vi be
the �rst vertex among v1, . . . , vk−1 adjacent to vk. �en all neighbours of vk must be among the
vertices vi, . . . , vk−1, so this list contains at least deg(vk) ≥ d vertices. In particular, if d > 1 then
vi, . . . vk−1, vk forms a cycle of length at least d + 1. Note that for d = 1 we might have i = k − 1,
and we would not get a cycle since vk−1, vk, vk−1 uses the same edge twice.

b) For every integer d > 1 provide an example of a graph G with minimal vertex degree d that does
not contain any cycle of length strictly greater than d + 1.

Solution: �e complete graph Kd+1 satis�es the condition. Every vertex has degree d, but there is
no cycle of length strictly greater than d + 1.

Exercise 9.4 Domino (1 point).

a) A domino set consists of all possible
(
6
2

)
+ 6 = 21 di�erent tiles of the form [x|y], where x and y

are numbers from {1, 2, 3, 4, 5, 6}. �e tiles are symmetric, so [x|y] and [y|x] is the same tile and
appears only once.

Show that it is impossible to form a line of all 21 tiles such that the adjacent numbers of any conse-
cutive tiles coincide.

b) What happens if we replace 6 by an arbitrary n ≥ 2? For which n is it possible to line up all
(
n
2

)
+n

di�erent tiles along a line?

Solution:We directly solve the general problem.

3

First we note that we may neglect tiles of the form [x|x]. If we have a line without them, then we can
easily insert them to any place with an x. Conversely, if we have a line with them then we can just
remove them. �us the problem with and without these tiles are equivalent.

Consider the following graphGwith n vertices, labelled with {1, . . . , n}. We represent the domino tile
[x|y] by an edge between vertices x and y. �en the resulting graph G is a complete graph Kn, i.e.,
the graph where every pair of vertices is connected by an edge. A line of domino tiles corresponds to
a walk in this graph that uses every edge at most once, and vice versa. A complete line (of all tiles)
corresponds to an Eulerian walk in G. �us we need to decide whether G = Kn has an Euler walk or
not.

Kn is obviously connected. If n is odd then all vertices have even degree n − 1, and thus the graph is
Eulerian. On the other hand, if n is even then all vertices have odd degree n− 1. If n ≥ 4 is even, then
there are more than 3 vertices of odd degree, and therefore Kn does not have an Euler walk. Finally,
for n = 2, the graphKn is just an edge and has an Euler walk. Summarizing, there exists an Euler walk
if n = 2 or n is odd, and there is no Euler walk in all other cases. Hence, it is possible to line up the
domino tiles if n = 2 or n is odd, and it is impossible otherwise.

Exercise 9.5 Data structures for graphs.

Consider three types of data structures for storing a graph G with n vertices andm edges:

a) Adjacency matrix.

b) Adjacency lists:
1

1

1

1

1

2

2

2

2

3

3

4

4

4

45

5

5

6

6

c) Adjacency lists, and additionally we store the degree of each node, and there are pointers between
the two occurences of each edge. (An edge appears in the adjacency list of each endpoint).
1

1

1

1

1

2

2

2

2

3

3

4

5

5

5

4

4

4

6

6

deg: 4

deg: 3

deg: 1

deg: 3

deg: 2

deg: 1

For each of the above data structures, what is the required memory (in Θ-Notation)?

Solution: Θ(n2) for adjacency matrix, Θ(n + m) for adjacency list and improved adjacency list.

Which runtime (worst case, in Θ-Notation) do we have for the following queries? Give your answer
depending on n,m, and/or deg(u) and deg(v) (if applicable).

(i) Input: A vertex v ∈ V . Find deg(v).

4

Solution: Θ(n) in adjacency matrix, Θ(deg(v)) in adjacency list, Θ(1) in improved adjacency
list.

(ii) Input: A vertex v ∈ V . Find a neighbour of v (if a neighbour exists).

Solution: Θ(n) in adjacency matrix, Θ(1) in adjacency list and in improved adjacency list.

(iii) Input: Two vertices u, v ∈ V . Are u and v adjacent?

Solution: Θ(1) in adjacency matrix, Θ(min{deg(v),deg(u)}) in adjacency list and in improved
adjacency list.

(iv) Input: Two adjacent vertices u, v ∈ V . Delete the edge e = {u, v} from the graph.

Solution:Θ(1) in adjacencymatrix,Θ(deg(v)+deg(u)) in adjacency list andΘ(min{deg(v), deg(u)})
in improved adjacency list.

(v) Input: An edge e = {u, v} ∈ E, i.e., a pointer to the location of that edge in your data structure.
Delete e from the graph.

Solution:We assume that the pointer points to the occurrence of e in the adjacency list of u. �en
the runtimes are:
Θ(1) in adjacency matrix, Θ(deg(v)) in adjacency list and Θ(1) in improved adjacency list.

(vi) Input: Two vertices u, v ∈ V with u 6= v. Insert an edge {u, v} into the graph if it does not exist
yet. Otherwise do nothing.

Solution: Θ(1) in adjacency matrix, Θ(min{deg(v),deg(u)}) in adjacency list and in improved
adjacency list.

(vii) Input: A vertex v ∈ V . Delete v and all incident edges from the graph.

Solution:Θ(n2) in adjacency matrix, Θ(n+m) in adjacency list andΘ(n) in improved adjacency
list.

For the last two queries, describe your algorithm.

Solution: �ery (vi): We check whether the edge {u, v} does not exist. In adjacency matrix this in-
formation is directly stored in the u-v-entry. For adjacency lists we iterate over the neighbours of u
and the neighbours of v in parallel and stop either when one of the lists is traversed or when we �nd v
among the neighbours of u or when we �nd u among the neighbours of v. If we didn’t �nd this edge,
we add it: in the adjacency matrix we just �ll two entries with ones, in the adjacency lists we add nodes
to two lists that correspond to u and v. In the improved adjacency lists, we also need to set pointers
between those two nodes, and we need to increase the degree for u and v by one.

�ery (vii): In the adjacency matrix we copy the complete matrix, but leave our the row and column
that correspond to v. �is takes time Θ(n2). �ere is an alternative solution if we are allowed to rename
vertices: In this case we can just rename the vertex n as v, and copy the n-th row and column into the
v-th row and column. �en the (n− 1)× (n− 1) submatrix of the �rst n− 1 rows and columns will be
the new adjacancy matrix. �en the runtime is Θ(n). Whether it is allowed to rename vertices depends
on the context. For example, this is not possible if other programs use the same graph.

In the adjacency lists we remove v from every list of neighbours of every vertex (it takes timeΘ(n+m))
and then we remove a list that corresponds to v from the array of lists (it takes time Θ(n)). In the im-
proved adjacency lists we iterate over the neighbours of v and for every neighbour uwe remove v from
the list of neighbours of u (notice that for each u we can do it in Θ(1) since we have a pointer between

5

two occurences of {u, v}) and decrease deg(u) by one. �en we remove the list that corresponds to v
from the array of lists (it takes time Θ(n)).

6

